
Simulating Fail-Stop in
Asynchronous Distributed Systems*

Laura Sabel**
Keith Marzullo

TR 94-1413
March 1994

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

* This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593, and by grants from IBM and
Siemens. The views, opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position,
policy, or decision.
** This author is also supported by an AT&T PhD Scholarship.

Simulating Fail-Stop in Asynchronous Distributed Systems"

Laura S. Sabel t

Cornell University

Department of Computer Science

Keith Marzullo

University of California, San Diego

Department of Computer Science

10 March 1994

Abstract

The fail-stop failure model appears frequently in the distributed systems literature. How-
ever, in an asynchronous distributed system, the fail-stop model cannot be implemented. In
particular, it is impossible to reliably detect crash failures in an asynchronous system.

In this paper, we show that it is possible to specify and implement a failure model that is
indistinguishable from the fail-stop model from the point of view of any process within an
asynchronous system. We give necessary conditions for a failure model to be indistinguishable
from the fail-stop model, and derive lower bounds on the amount of process replication needed
to implement such a failure model. We present a simple one-round protocol for implementing
one such failure model, which we call simulated fail-stop.

1 Introduction

The fail-stop failure model appears frequently in the distributed systems literature. The fail-stop

model makes two assumptions about the failure behavior of processes: processes fail only by

permanently crashing, and when a process crashes, surviving processes will eventually detect

that failure. The fail-stop model is appealing because it makes distributed algorithms easier to

formulate: fail-stop failures are easy to tolerate.

For example, suppose that a set of processes { 1,2, ..., n} wish to solve the election problem: at any

point, no more than one process of the set can be the leader, and as long as all processes do not fail,

it is always the case that there will eventually be a leader. Assuming a fail-stop failure model leads

to a very simple solution. Each process maintains a local copy of the list (1, 2, ..., n/, and the first

element of this list denotes the leader. When process i detects the failure of process j, i removes j

froms its local copy of the list. When i finds itself the first element of its list, i knows that it is the

leader. Since a process becomes the head of the list only when all lower-numbered processes have

failed, there is no more than one leader at any time; and, as long as a process eventually detects

the failure of the lower-numbered processes, it will eventually become the leader.

"This work was supported by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant
number NAG 2-593, and by grants from IBM and Siemens. The views, opinions, and findings contained in this report
are those of the authors and should not be construed as an official Department of Defense position, policy, or decision.

tThis author is also supported by an AT&TPhD Scholarship.

A serious limitation of assuming a fail-stop failure model is that it is often an unrealistic

assumption. In particular, in an asynchronous distributed system (i.e., a system with no shared

memory, arbitrary message delivery times, no global clock, and arbitrary process speeds), the

fail-stop model cannot be implemented. This is because it is impossible to reliably detect crash

failures in an asynchronous system (see Theorem 1).

On the other hand, there are systems (e.g., Isis [BJ87]) that provide crash-failure detection with-

out making synchrony assumptions. They do this by allowing failures to be detected erroneously,

e.g., by using timeouts and gossip messages ([RB91]) to attain agreement among a set of processes

that a process p has failed even though that process p may not have crashed. Hence, they provide

a failure model that resembles fail-stop in some ways but is not strictly fail-stop.

In this paper, we present a failure model, called simulated fail-stop, that is internally indistin-

guishable from fail-stop, meaning that under this model, no process in the system can determine

that it is not running in a system in which the fail-stop assumption holds. We give a set of con-

ditions that are necessary in order for any model to be indistinguishable from fail-stop, and we

prove that simulated fail-stop is indistinguishable from fail-stop. We give lower bounds on the

number of processes needed for a one-round implementation of the simulated fail-stop model to

tolerate t failures, and show that these bounds hold for any model that is indistinguishable from

fail-stop. F'mally, we show that the bounds are fight by giving a protocol that attains them.

The paper is organized as follows. Section 2 describes the system model used throughout

the paper, including notation, definitions, and a formal logic used to describe system properties.

Section 3 specifies the fail-stop and simulated fail-stop models, introduces the notion of indistin-

guishability of failure models, and proves that certain conditions are necessary and/or sufficient

for a failure model to be indistinguishable from fail-stop. Section 4 gives lower bounds on the

number of processes needed to tolerate t failures for one-round failure detection protocols imple-

menting the simulated fail-stop model, and shows that these bounds hold for any model that is

indistinguishable from fail-stop. Section 5 shows that these lower bounds are tight by presenting

a protocol that meets them. Section 6 concludes the paper and discusses the work that remains to

be done on this topic.

2 System Model

We consider a distributed system consisting of a set of n processes P = {1,2,..., n}. A process

fails by simply stopping execution (crashing), and a failed process does not recover. The system

is asynchronous, meaning that the rate of execution of any process with respect to any other is

unbounded and there are no physical clocks. Between any two processes i and j there exist two

unidirectional FIK) channels: Ci,j from i to j and C_,i from j to i. Processes communicate only

by sending and receiving messages over these channels. The channels are nonfaulty: they do

not lose, generate, or garble messages. Message delivery time is unbounded. We assume for

simplicity that channels have infinite buffers and that all messages m are unique (they can easily

be made so by including in m its source and a sequence number). The state of a channel is the

sequence of messages that have been sent along the channel but not received along the channel.

A process is defined by a set of states, one of which is denoted the initial state. The state of

a process i consists of the values of all internal variables of the process, plus the values of n + 1

additional boolean variables that are defined as follows:

• crash/. This variable is initially false and can become true at any time. Once crash; becomes

true, the state of i does not change further. (This models the failure of i.)

• Vj E P" failedi(j). This variable is initially false for all values of j, and becomes true when i

detects the crash of process j. Once failed_ (j) becomes true, it remains true forever. Exactly

when failed/(j) becomes true with respect to when crash3 becomes true is discussed in this

paper.

A global state of the system is a set of process and channel states. An initial global state is the

global state in which each process state is an initial state and each channel state is the empty

sequence.

An event e is a function that maps global states to global states. An event e applied to a global

state _ yields a new global state _' that differs from E in the local state of exactly one process i

and the state of at most one channel incident on i. We say in this case that e is an event of i, and

that e changes the state of i.

If an event e of process i changes the state of C/,j for some j, then we call e a send event. A send

event changes the state of a channel by appending a message m to the sequence of messages on

that channel. If e changes the state of Cj,i for some j, then we call e a receive event. A receive event

changes the state of a channel by removing a message from the head of the sequence of messages

on that channel.

We define events, runs, and predicates formally in Appendix A.1. Informally, send, receive,

crash, and failure detection events are defined as follows:

• sendi(j, m) denotes the event whereby process i sends the message m to process j.

• recv_(j, m) denotes the event whereby process i receives the message m from process j.

• crash_ denotes the event whereby crash/becomes true.

• failedi(j) denotes the event whereby failedi(j) becomes true.

Definition I A run of the system is an infinite sequence of global states of the system: r = (S0, Sa, E2,...),

where _o is an initial global state and there exists a sequence of events (eo, el, e2,...) such that for all i > 0,

+1 = e(_).

Definition 2 Given any run r = (So, _h _2, . . .), the history oft, denoted ?fr , is the sequence of events

(eo, el, e2,. ..) such that for all i >_ 0, _i+1 = ed_i).

Note that for any run r, ?fT is uniquely determined. Furthermore, r can be constructed from a

history "Hrand the initial global state ,v0.

Throughout this paper, we use the notation 7fr = (... ei'-- ej -.. ek" "). This denotes that ?f_

is of the form (x; ei; y; ej; z; ek; w), where ei, ej, and ek are events, x, y, and z are finite sequences of

events, and w is an infinite sequence of events.

We specify properties of systems using predicate logic over global states and linear-time

temporal logic over (infinite) suffixes of runs [Pne77]. We define the boolean predicates SENDi (j, m)

and RECVi(j, m) as follows.

• Vi,j, m: SENDi(j, m) and RECVi(j, m) are false in an initial global state.

• sendi(j, m)(_) _ SENDi(j, m). That is, SENDi(j, m) becomes true when send_(j, m) has oc-

curred.

• recvi(j, m)(_) _ RECV_(j, m). That is, RECVi(j, m) becomes true when recv_(j, m) has oc-

curred.

Furthermore, both SENDi(j, m) and RECVi(j, m) are stable by definition: once such a predicate

becomes true in a run, it remains true for the remainder of the run. ([CI./LS])

We define the boolean predicates CRASH/and FAILEDi(j) as follows. Let _ be a global state.

• _ _ CRASHi if and only if _asl_ is true in E.

• Vj: E _ FAILEDi(j)ifandonlyiffailedi(j)istruein E.

Note that both CRASH_ and FAILEDi(j) are stable by assumption: once these local variables become

true in the local state of i, they remain true thereafter.

Let s = (E0, _1, _2,...) be a suffix of a run, let _a be a predicate, and let P be a temporal logic

formula.

• k) ia

• (s,k)_6Piff3j>_k: (s,j)_P

• (s,k)_npiffVj>k: (s,j)_P

Furthermore, we abbreviate (r, 0) _ P as r _ P.

We define the failed-before relation as follows:

Definition 3 If r _ OFAILEDj(i) in some run r, we say that i failed before j in r.

4

Note that it is possiblethat bothCRASH/andCRASHj hold in some global state yet neither i failed

before j nor j failed before i.

We use a version of the happens before relation of [Lam78]. Given two events el and e2, define

el --* e2 (read %1 happens before e2") in some history "_/Tif one of the three following conditions

holds:

1. el and e2 are of the same process, and either el = e2 or el precedes e2 in 7-Er,

2. el = sendi(5, m) for some value of i, j, and m, and e2 = recvj(i, m);

3. there exists an event e such that el _ e and e -- e2.

The happens-before relation as defined here is the same as that given in [Lam78], except that

our relation is reflexive. This is for notational convenience. Note that for all el # e2, el ---* e2

implies that el precedes e2 in _l_r. The converse does not hold, however.

Let r be a run. Let ri be the sequence of states of i in r, with repeated states removed (i.e., so

that adjacent states are distinct). If x and Y are runs, then we say that run x is isomorphic to run y

with respect to process i, denoted z =_ Y, if and only if _:_ = W. In other words, x =_ Y if and only

if runs x and Y are indistinguishable to process i. Similarly, rQ for Q c_ P is the sequence of states

of processes i E Q in r with repeated states removed, and x =Q Y if and only if xQ = VQ. (See

[CM86] for a detailed discussion of the ramifications of indistinguishability of runs.)

3 Specification of Failure Models

A failure model describes the manner in which the components of a system can fail. For our

purposes, a failure model constrains how crash events and failed events can occur with respect to

each other. We give these constraints as a set of properties and define the failure model as the set

of runs that satisfy these properties.

3.1 The Fail-Stop Failure Model

The minimal set of fail-stop assumptions found in the literature is that in any infinite run of the

system, a process's failure is eventually detected by all processes that don't crash, and that there

are no false detections of failure. These two conditions specify the failure model defined in [Sch84].

Hence, we adopt this as the definition of the fail-stop failure model.

Formally, the two fail-stop conditions are:

FSI: Vr, i: r _ D(CRASHi ::_ V.?: _(CRASHj V FAILEDj(i)))

FS2: Vr, i,j: r _ 13(FAILED.i(i)::_CRASHi)

We denote with FS the set of runs satisfying properties FS1 and FS2.

5

TheoremI In an asynchronous system in which crash failures are possible, properties FS1 and FS2 are

impossible to implement.

Proof: In [C'I_I], an algorithm is given for solving Consensus with a Strong Failure Detector. A

Strong Failure Detector is shown to be strictly weaker than a Perfect Failure Detector, implying

that a Perfect Failure Detector can also be used to solve Consensus. A solution to Consensus

contradicts the result of [FLP85]; therefore, a Perfect Failure Detector cannot be constructed.

A Perfect Failure Detector is defined In [CT91] as a failure detector satisfying Strong Com-

pleteness and Strong Accuracy. These two properties are identical to FS1 and FS2. Therefore,

implementing FS is equivalent to implementing a Perfect Failure Detector, and is therefore im-

possible. []

3.2 Indistinguishable Failure Models

A process determines which event to execute based on its state and the messages that it has

received. A run r is isomorphic to a run r t with respect to a process i if i executes the same events

in both r and r'. We know that the two runs are isomorphic with respect to i if i starts in the same

initial state in both runs, receives the same messages in the same order in both runs, and makes

the same nondeterministic choices (if any) in both runs. Consider a run r of a system. If r is not

in FS but is isomorphic with respect to i to a run r _ In FS, then the events i executes are the same

as if it were running in a system satisfying the fail-stop assumptions. Hence, if r =p r', then no

process in P can determine that r is not in FS.

Definition 4 A failure model M is indistinguishable from the fail-stop model if for any run r E M, there

exists a run r_ E FS such that r = p r' (that is, r is indistinguishable from r t to every process in P).

Consider the election protocol described in Section 1. If a run of this protocol is in a failure

model M that is indistinguishable from, but not identical to IS, then there may be more than one

leader in some global state, but no process will be able to determine this. Thus, internally the

execution is the same as if there were only one leader at a time.

Recall that the reason that FS can not be implemented in an asynchronous system is because

the crash of a process cannot be reliably detected. A failure model M that can be implemented

and is indistinguishable from FS must be weaker than FS. However, it cannot be too weak; at the

very least, a process i must not be able to determine that some process j executes an event after

i detects that j has crashed. Furthermore, if a process detects the failure of i then i must crash

at some point, and process crashes must have been able to occur in some total order. Hence, the

following three conditions are necessary for indistinguishability :rom FS.

Condition I For all runs r, ifr _ _I:AILED_(j), then r _ _CRASHj.

Condition 2 The failed-before relation must beacyclic. That is, for all runs rand for all k, there cannot exist

processes xl, x2, x k such that r _ FAILEDxl (x 2) A FAILEDx,_ (x 3) A- • .A FAILED_ck__ (xk) A FAILEDxk (x l).

Condition 3 For all runs r, there cannot be an event e of process j such that failedi(j) -- e in]-17.

Theorem 2 If failure model M is indistinguishable from FS, then all runs of M satisfy Conditions 1-3.

Proof:

Condition I In order for two runs to be isomorphic, their histories must contain the same events.

For every run r that satisfies FS, failedi(j) E 7-lT_crashj E 7-[7. Therefore, the same must be

true of every run that satisfies M. []

Condition 2 For contradiction, suppose that there is some run r of M such that r does not satisfy

Condition 2. We show that there is no run r _satisfying FS that is isomorphic to r with respect

to P.

If r does not satisfy Condition 2, then there is some set of processes {x0, xl, • •., xk } such that

7-t7= (... f aiteGo(Zl) . . .failed x, (:_2) failed _k_, (z k) . . . failed_k (x0)...). For any run

r _ satisfying FS, 7-/7, must contain crash_, for all 0 < i < k. Furthermore, crash_, must occur

beforefailedx_e_(xi) andfailedx_(xiel) must occur before crash_, where 0 and @ are - and +

modulo k + 1 respectively. By transitivity, this leads to circular constraints on _7,: crash_:o

must occur before failedx_, (z0), which must occur before crash_: k, which must occur before

failed, k__(:r.k).... , crash_ must occur before failed_o (:rl), which must occur before crash_ o. It

is impossible to satisfy all of these ordering constraints in a valid run. Therefore, there is no

run r _isomorphic to r that satisfies FS. []

Condition 3 For contradiction, suppose that there is some run r of M such that r does not satisfy

Condition 3. We will show that there is no run r' satisfying FS that is isomorphic to r with

respect to P.

If r does not satisfy Condition 3, then ?/_ = (.--failedi(j)... sendi(k, rak).., recvd(t, mj)...

ej ...), where sendi(k, ma) ---, recvj(l, raj). For any r' isomorphic to r, _/_, must maintain

the order of failedi(j), sendi(k, ink), and recvj (_, mj) in order to satisfy the happens-before

relation. However, for r' to satisfy FS, crashj must occur beforefailedi(j) in 7-l_,. This means

that in 7_,, crashj must occur before recvj(l, mj), which contradicts the definition of crashj.

Therefore, there is no run r' isomorphic to r that satisfies FS. []

We have shown that Conditions 1, 2, and 3 are necessary for a failure model to be indistin-

guishable from fail-stop. However, these conditions are not sufficient.

Theorem 3 There exists a run r that satisfies Conditions 1-3 such that -_qr _ : r t =e r a r _ E FS.

Proof: Let r be the following run:

failedyC x); sendy(a, mo); recv_(y, m_); crash_; failedb (a); sendb(x, ms); recv_(b, ms); crash_ . . .

For any r' isomorphic to r, we have the following ordering constraints on 7it,:

• failed(x) -. send_(a, ma) --" recv_(y, ma) --, crasha

• failed6(a) --_ send6(x, ms) _ recv_:(b, ms) ---, crash_

• crash_ must occur beforefailed_(x)

• crash_ must occur beforefailedb(a)

It is impossible to satisfy all of these ordering constraints in a valid run. Therefore, them is no

run r' isomorphic to r that satisfies FS. []

Theorem 3 implies that a failure model M that satisfies Conditions 1-3 may not be indistin-

guishable from FS. In the next section, we give a set of conditions that are sufficient, though not

all are necessary.

3.3 Simulated Fail-Stop

We give four properties that comprise a model that is indistinguishable from fail-stop. We call

this model the simulated fail-stop model (siS).

To construct conditions for the sFS model, we weaken one of the conditions of the fail-stop

model. Weakening FS1 yields a model in which some failures may be undetected. Under such a

model, it could be impossible for a system to make progress. Therefore, we follow [CT91,CHT92,

RB91] and weaken FS2. This yields a model in which nonexistent failures may be detected.

FS1 is a liveness property. In a real system, it would be be implemented using timeouts: each

process would periodically send a message to every other process. If process i were not to receive

a message from process j within some predetermined length of time, then i would (perhaps

erroneously) detect the failure of j. We assume for the remainder of this paper that there is some

mechanism provided by the underlying system to implement FS1.

We replace FS2 with the following four condition_

sFS2a: Vr, i, j: r _ O(FAILEDi(j):_ OCRASHj)

This condition states that if process i detects that process j has crashed, then eventuaUy j will crash

even if i's detection was erroneous. In conjunction with FS1, this condition implies Condition 1:

if failedi(j) occurs in 7G, then crashj occurs in 7f_.

sFS2b : The failed-before relation is always acyclic.

sFSI:

sFS2a:

sFS2b:

sFS2c:

sFS2d:

FS1

r _ D(FAILEDi(j) =_ _CRASHj)

The failed-before relation is acyclic.

r _ D-_FAILEDi(i)

r _ D[FAILEDi(j) A -_SENDi(k, m) =¢,

D((SENDi(k, m) A RECVk(i, m)) _ FAILEDk(j))]

Figure 1: Simulated Fail-Stop Conditions

This is Condition 2.

sFS2c: Vr, i: r _ D-_FAILEDi(i)

This condition states that a process never detects its own failure. That is, failedi(i) does not occur

in 7_.

sFS2d : Vr, i, j, k: r _ D[FAILEDi(j) A --,SENDi(k , m) =_

D((SENDi(k, m) A RECVk(i, m)) =_ FAILEDk(j))]

This condition states that once i detects the failure of j, then any subsequent messages sent by i

to any process k will not be received until k has also detected the failure ofj. That is, if send_(k, m)

occurs after failedi(j) in ?f_, then failedk(j) occurs before recvk(i, m) in ?-l_.

Properties sFS2c and sFS2d together imply Condition 3, as shown in the following lemma.

Lemma 4 If sFS2c and sFS2d hold in a run r, then there cannot be an event e of process j such that

failedi(j) --. e in 7t_.

Proof: Consider any run r. If i = j, then the lemma is trivially true, because from sFS2c, failedi(i)

does not appear in 7t_. Assume that i _ j. For contradiction, let e be an event of j such that

failedi(j) --. e in 7t_. Since failedi(j) and e are of different processes, from the definition of the

happens-before relation there is a sequence of events failedi(j) ---*send_(kl , ink,) --_ reevk 1(i, mk,)

sendk_(k2, ink2) _ "'" "* recvj(kt, mk,+_) --- e. From sFS2d, each process in this chain, induding j,

must have detected the failure of j by the time it receives its message. Therefore, failedj(j) must

occur in 7/_, which contradicts sFS2c. D

The sFS conditions are summarized in Figure 1.

Theorem 5 The simulated fail-stop model (sFS) is indistinguishable from the fail-stop model (FS).

The full proof of this theorem is given in Appendix A.2. An outline of the proof is given below.

Consider a run r that satisfies FS1 and sFS2a-d but violates FS2. Then, there exists at least one

pair of processes i and j such that r _ _(FAILEDj(i) ^ -,CRASH/). For each such pair, by sFS2a,

r _ _CRASHi. Therefore, ?f_ = (...failedj(i)...crashi...). It can be shown that an event e can

be moved within 7f_, resulting in ?f_, such that r' =p r, as long as the happens-before relation is

maintained in ?f_,. We show in Appendix A.2 that -,(failedj(i) _ crashi), and that therefore, crashi

and all events e betweenfailedj(i) and crashi in ?f_ such that e _ crashi can be moved to precede

f_iled_(i) in ?f_,. Thus, if r satisfies sFS2a-d, then the events in ?f_ can be rearranged so that crashi

precedes failedj(i) for all i, j in ?f_,.

4 Lower Bounds

The simulated fail-stop properties (FS1, sFS2a-d) put restrictions on the way in which failures are

detected. Implementing these properties requires that processes follow a protocol for detecting

failures. In this section, we give lower bounds on message complexity and replication for failure

detection protocols implementing sFS.

A one-round protocol for detecting a failure is one in which each process i exchanges one round of

messages with other processes before execufmgfailedi(j). Any protocol simpler than a one-round

protocol would allow at least one process to unilaterally detect the failure of some other process.

Such a protocol, however, would limit which processes another process could detect as faulty.

For example, suppose that process i can unilaterany decide that process j has failed. Process i

can executefailedi(j) concurrently with any event of _ j, and so process j can never execute

failedj(i). Hence, we win consider the class of one-round protocols in order to determine message

and replication complexity.

We say that a process i initiates a failure detection protocol when it "suspects" the failure

of another process j (e.g., due to a timeout at a lower level). In the first half of the round,

process i sends a message to all other processes; in the second half of the round, processes send

an acknowledgement message to i. We call the first message susPi,j and the acknowledgement

message ACK.SUSPi,j. Upon completion of the failure detection protocol, i win execute either crashi

orfailedi(j) for some j _ i.

A one-round protocol that implements sFS must avoid cycles in the failed-before relation since

an runs in sFS satisfy sFS2b. Implementing sFS2b requires that in any run there is at least one

process that participates in an failure detections. To see why this is so, consider the problem of

avoiding cycles involving exactly two processes. Suppose that process a suspects the fanure of

process b. Before a can execute failed_ (b), the failure detection protocol must ensure that failed b(a)

has not been executed and thatfailedb(a) will not be executed in the future.

The failure detection protocol cannot require a to communicate with b directly, because b may

have indeed crashed. Therefore, the protocol must require a to receive information from, and

10

distribute information to, other processes. In particular, a must receive information from enough

other processes to be sure that failed b(a) has not been executed, and a must distribute information

to enough other processes to be sure that iffailed_ (b) is executed, then failedb(a) will not be executed

in the future.

The relevant information that a must disseminate is that a suspects the failure of b. In order

for a to know that this information has been received by other processes, it must receive messages

from other processes acknowledging that the failure of b is suspected.

Definition 5 The quorum set Q q of failedi (j) is the set of processes from which i has received acknowl-

edgement messages relating to its suspicion of j's crash. Formally, Qij --- {k E P : SENDi(k. 5USPi,j) A

RECV (k,ACK.SUSP ,j)}.

The set Qab must be large enough to ensure that b, after hearing from Qba, will not execute

failedb(a). In particular, the sets Qab and Qb_ must have a non-nuU intersection.

We call this property the Witness Property (W), because the quorum sets for any two failure

detections must have at least one process (the witness) in common. It can be shown that the same

property must hold in order to avoid cydes of any size. The Witness Property can be stated

formally as follows:

()v) N Q,J #
Vi,_ FAILED,(j)

That is, there is some process w that is in the quorum set of all failure detections. Note

that this is a stronger condition than what is necessary, for example, in the update of replicated

variables [GifT9] in which only each pair of quorum sets must intersect.

Theorem 6 (Vr: r _ _sFS2b) =_ (Vr: r _ OW).

It was argued above that (r _ osFS2b) _ (r _ DW) if only cycles of size two are possible.

The full proof of the theorem is given in Appendix A.3.

Since sFS2b (Condition 2) is necessary for indistinguishability from FS (see Section 3.2), The-

orem 6 implies that W is necessary for any one-round protocol that implements a failure model

indistinguishable from FS. Let t be the maximum number of crashes in any run, including those

that arise from erroneous suspicions. The necessity of the Witness Property places a constraint on

t as a function of n and on the number of messages that a process must wait for before detecting

a failure.

The simplest way to ensure that W holds in a one-round protocol is to require a process to wait

for responses from every other process, except for those that are suspected to have failed, before

detecting a failure. If there is always at least one process that never fails, nor is suspected of failing,

then this process will be a witness to every failure detection that is executed. This implementation

only-requires that t < n. However, if n is large and t is small, then each failure detection requires

a process to wait for many messages, which in practice could take a long time.

11

Analternativeimplementationistorequireaprocessto wait for a fixed, predetermined number

of responses before detecting a failure. This approach reduces the size of the quorum for which a

process must wait, but it places a stronger restriction on the number of failures that can occur.

Theorem 7 If the size of the quorum set is a fixed and equal size for each failure detection, then to guarantee

that r _ [] W when t failures are possible, the size of each quorum set must be strictly greater than n(L__).

Proof: We assume that in any run, no more than t failures will occur. Therefore, the largest possible

cycle in a run satisfying (simulated) fail-stop involves t processes. We must guarantee that any t

quorum sets Q 1--" Qt have a nonempty intersection.

Let the size of a quorum be z. Let y = n-x. Suppose y = [_]. Then there isaset

of t quorum sets such that Vi E P : 3j : i fd Qj. In particular, let Q1 = P - {1,2,...,y},

Q2 = P-{y+I,y+2,---,2y},"',Qt = P-{n-y+l,n-y+2,...,n}. By construction,
t

each process is not a member of at least one quorum. Therefore, f'_ Q i = 0. Clearly, such a set of
i=l

quorum sets can also be constructed if y > [_]. Therefore, we must have y < [_].

x=n-y _

nt - n

• > L--T--J

Lr,(t -

Therefore, the size of a quorum must be an integer strictly greater than n(t-1)t °
[]

Corollary 8 If the minimum quorum size is used in a one-round protocol for failure detection, then it must

be the case that n > t 2.

Proof: In a one-round protocol, the size of the quorum is equal to the number of ACK.SUSPi,j

messages that process i must receive before execufmgfailedi(j). Since i is in its own quorum, i

must wait for In(_.2)] messages before detecting j's failure. In order for the one-round protocol

to make progress, at least this many other processes must remain alive. Therefore, we have

- t > n- t >_Ln- >_n -

t < L J

d<tLt J <n

=_ t2 < n

I-1

12

5 Upper Bounds

We give a simple one-round protocol that implements sFS2a-d. We assume that a failure can be

suspected spontaneously (e.g., due to a timeout), but that no more than t failures are suspected in

any run. In this protocol, SusPi,j = ACK.SUSPi.j = "j failed".

When process i suspects the failure of process j, i sends the message "j failed" to all processes

(including itself). Process i waits for messages of the form "j failed" from other processes

and takes no other action except for acknowledging "x failed" messages until it completes

the protocol or crashes.

When process i has received messages of the form "j failed" from more than n(_) processes

(including itself), i executes failed_(j).

• When process x receives a message of the form "x failed", x executes crash_.

• When process x receives a message of the form "y failed", x suspects the failure of y.

We will argue informally that this protocol implements the simulated fail-stop properties.

sFS2a: Process i cannot executefailedi(j) without sending a message of the form "j failed" to all

other processes, including j. Since channels are nonfaulty, j will eventually receive such a

message, upon which j will crash.

sFS2b: The full proof is given in Appendix A.4. We give an outline of the proof for cycles of length

2. Suppose that the protocol generates a run r such that r _ (_(FAILEDi(j) A FAILEDj(i)). By

Theorem 7, r _ [3 W holds. Therefore, there is some witness w such that i received "j failed"

from w and j received "i failed" from w. Process w sends these messages to all processes. If

w sends "j failed" before it sends "i failed", then process j will receive "j failed" and crash

before it can executefailedj(i). Similarly, if w sends "i failed" before it sends "j failed", then

process i will receive "i failed" and crash before it can execute failed i (j). Therefore, it is not

possible for bothfailedi(j) and failedj(i) to be executed in a run.

sF$2c: Process i cannot execute failedi(i) without receiving at least one message of the form "i

failed". Upon receiving such a message, i crashes. Therefore, failedi(i) is never executed.

sF$2d: Since channels are FIFO, any message m sent by i to k afterfailed_(j) is executed must be

received after the message "j failed". Upon receiving "j failed" from i, process k suspects

the failure of j and initiates the failure detection protocol. Process k does not receive m

•until either crashk orfailedk(j) is executed. Therefore, message m is not received by k unless

failedk(j) has been executed.

13

6 Discussion

In Section3.2,we showedthat Conditions 1,2, and 3 arenecessaryfor any failure model to be

indistinguishable from the fail-stop model. In Section 4, we showed that the Witness Property

is necessary for any one-round protocol implementing Condition 2. We then showed that the

Witness Property imposes lower bounds on the number of messages that must be received before

a failure can be detected and on the number of failures that can be tolerated in a system.

We gave a protocol in Section 5 to demonstrate that these bounds are tight. This protocol,

however, was derived from conditions that are not necessary for indistinguishability. There may

be a failure model weaker than sFS that is indistinguishable from IS. However, such a failure

model is subject to the same bounds on t as sFS, and so we do not expect such a failure model to

be substantially more interesting than sFS.

The bounds on t arise from sFS2b. A failure model satisfying only the other sFS assumptions

would not require a process to wait for any messages before detecting a failure: the other sFS

properties can be implemented simply by having process i broadcast a message "j failed" after

suspecting j's failure and before unilaterally executing failedi(j). Such a failure model would, of

course, be distinguishable from FS, but if a collection of procesaes are insensitive to cyclic failures,

then they could be run in this cheaper simulated failure model. We do not know of any protocols

in the literature that are insensitive to cyclic failure detection, however.

As an example of sensitivity to sFS2b, consider the problem of determining the last process to

fail ([Ske85]). Solving this problem requires that processes record information about the failures

that they detect (that is, their view of the failed-before relation). Then, when processes are

recovering after a total failure, the recovering processes can determine when the last processes to

fail have recovered. If cyclic failure detection is possible, then the problem is not solvable. For

example, suppose P = {1, 2}, process I falsely detects 2"s failure, and then crashes. Process 2

detects l"s failure, proceeds with its work, and finally crashes. If process I were to then recover, it

would conclude that it was the last to fail. In general, if cyclic detection is possible then the only

possible recovery is to always wait for all crashed processes to recover.

There are other protocols that require failure models even stronger than IS. For example, if

the failed-before relation is transitive as well as acyclic, then detecting the last process to fail can

be implemented so that as soon as the last processes to fail have recovered, then the processes can

determine this. If the failed-before relation is not transitive, then it is necessary to wait for more

processes to recover. The failed-before relation of sis is not transitive. We are currently looking

into several stronger versions of fail-stop, whether they are implementable given fail-stop, and

Into how they too can be simulated.

The protocols described in this paper are very simple and are easily implementable. Failure

detection such as described here is typically done as part of a group membership service (e.g.,

[RB91,MPS91,ADKM92]). We believe that the protocols here could be used as the basis of a failure

14

detector that could be used outside of a system built using a group-membership protocol. This

would allow for consistent failure detection on top of any kind of lower-level communication,

including point-to-point communication.

References

[ADKM92]

[BJ871

[CHT92]

[CL85]

[CM861

[C_I]

[FLP85]

[Gif791

[Lam78]

[MPS91]

Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communica-

tion sub-system for high availability. In Proceedings of the 22nd Annual International

Symposium on Fault-Tolerant Computing (FTCS), pages 76--84, July 1992.

Kenneth Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed

systems. In Proceedings of the Eleventh Annual ACM Symposium on Operating System

Principles, pages 123-138. ACM, 1987.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure

detector for solving consensus. In Proceedings of the Eleventh Annual ACM Symposium

on Principles of Distributed Computing. ACM, August 1992.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global

states of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75,

February 1985.

K. M. Chandy and Jayadev Misra. How processes learn. Distributed Computing,

1(1):42-50, 1986.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asyn-

chronous systems. Technical Report TR91-1225, Department of Computer Science,

CorneU University, August 1991.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-

tributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, April

1985.

David K. Gifford. Weighted voting for replicated data. In Proceedings of the Symposium

on Operating Systems Principles, pages 150-162. ACM SIGOPS, December 1979.

Leslie Lamport. Tune, docks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558-565, July 1978.

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. A membership

protocol based on partial order. In Proceedings of the International Worldng Conference

on Dependable Computing for Critical Applications, February 1991.

15

[Pne77]

[RB91]

[Sch841

[Ske85]

A. Pneuli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium

of Foundations of Computer Science. ACM, November 1977.

Aleta Ricciardi and Kenneth Birman. Using process groups to implement failure

detection in asynchronous environments. In Proceedings of the Tenth Annual ACM

Symposium on Principles of Distributed Computing. ACM, August 1991.

Fred B. Schneider. Byzantine generals in action: Implementing fail-stop processors.

ACM Transactions on Computer Systems, 2(2):145-154, May 1984.

Dale Skeen. Determining the last process to fail. ACM Transactions on Computer

Systems, 3(1):15-30, February 1985.

16

A Appendices

A.1 FormalDefinition of Events,Runs,andSpecialPredicates

Recallthat anevent e is a function that maps global states to global states. An event e applied to a

global state E either

• yields E, in which case we say that e is a null event; or

• yields a new global state E' that differs from E in the local state of exactly one process i and

the state of at most one channel incident on i. We say in this case that e is an event of i, and

that e changes the state of i.

A non-null event e is uniquely defined by the process i whose state it changes, the state _ of i

immediately before e is applied, the state d of i resulting from e, the states of the channels incident

on i before e is applied, and the states of the channels incident on i after e is applied. Let Xij be

the state of channel Cij. Let Xi,. be the n-tuple (A'i,1, Xi,2,..., Xi,n} and let X.,i be the n-tuple

(XLi, -Y2,i, • • •, Xm_).Then, e is defined by the 7-tuple {i, s, g, Xi,., X_,., X.,i, X'.,i), such that:

• if Xi,. # X_,. (e is a send event), then X.,i = X.,i. there exists exactly one j # i such that

Xi,j # X_j, and X_,j = (Xij :: m) for some message m (where :: is the catenation operator).

• if X.,i # X_.,i (e is a receive event), then Xi,. = Xi. ., there exists exactly one j # i such that

t XtXj,i # Xj, i, and (m :: j,i) = Xj,i for some message m.

If e is a null event, then e is not of any process i and therefore is not represented by a 7-tuple.

Definition 6 Wesay that (non-null) e = (i, ,, d, Xi,., Xi,., X.,i, X_.,i) can occur inglobal state E ifand

only if:

• the state of process i in E is s,

• the states of the incoming channels incident on i in E are ,¥i,., and

• the states of the outgoing channels incident on i in E are X.,i.

A null event can occur in any state.

Let e = (i, 8, s', Xi,., X_,., X.,i, X_.,i). We abbreviate send and receive events as follows.

• If e is a send event of i and C_j = (Cij :: m) for some j, then e is denoted sendi(j, m).

• If e is a receive event of i and (m :: Cj,i) = Cj.i for some j, then e is denoted recvi(j, m).

We define "crash" events and "failure detection" events as follows:

17

• If crashi is false in _ and true in s', then e is denoted crash_. By assumption, crashi changes

only the local variable crashi.

• If qj: failedi(j) is false in _ and true in _', then e is denoted failedi(j).

The events sendi (j, m), recvi (j, m), crashi, and failed i (j) are atomic; each event only changes the

relevant state variables of the process on which it occurs. For example, if crash/is false in local

state s of i when sendi(j, m) occurs, then crash/is false in the resulting state of i.

Definition 7 Let r = (Eo, El, E2,...) be an infinite sequence of global states of the system. We say that

r is a run of the system if and only if Eo is an initial global state and there exists a sequence of events

(eo, el, e2,...) such that for all i >_ O, ei can occur in Ei and Ei+I = ei(Ei).

• Vi, j, m: SENDi(j, m) and RECVi(j, m) are false in an initial global state.

• Lete = sendi(j, m) andlet E beaglobal state such that e canoccurin E. Then_endi(j, m)(E)

SENDi(j, m). That is, SENDi(j, m) becomes true when sendi(j, m) has occurred.

• Let e = recvi(j, m) and let E be a global state such that e can occur in E. Then recvi (j, m)(E)

RECVi(j, m). That is, RECVi(j, m) becomes true when recvi(j, m) has occurred.

A.2 Proof of Theorem 5

Theorem 5 The simulated fail-stop model (siS) is indistinguishable from the fail-stop model (FS).

In order to prove that for any run r that satisfies FS1 and sFS2a-d, there is an isomorphic run

r _ that satisfies FS1 and FS2, we will need to determine the conditions under which an event in a

history 7_ can be moved to yield a history 7_, such that r -me r'.

Consider _ = (...ei, ei+l,ei+2...) corresponding to run r = (..., Ei, Ei+l, Ei+2,...). By

definition, ei can occur in Ei and ei+l can occur in ei(Ei) = Ei+l. Assume that ei and e_+l are

non-null events.

Suppose that ei and ei+l are of the same process k. Since ei changes the state of k, the state of

k is not the same in Ei as in Ei+I. Therefore, ei+l cannot occur in Ei.

Now suppose that ei and ei+l are of two different processes k and e, respectively. The state of

t in Ei is the same as that in Ei+I, because ei does not change the state of L Therefore, if ei+l is not

a receive event, then ei+l can occur in El. If ei+l is a receive event, and changes the state of any

incoming channel other than C_,t, then ei+ 1 can occur in Ei, because the states of all other incoming

channels must be the same in Ei and Ei+l. However, if ei+l = recvt(k, m) and ei = sendk(_, m),

then ei+l cannot occur in Ei, because the message m is not part of Xk,t in El.

In summary, ei+l cannot occur in Ei if and only if

• ei and _ are of the same process, or

18

• ei = sendk(i, m) and ei+l = recve(k, m).

In other words, ei+l cannot occur in 2i if and only if (e, -- ei+l).

Assume that ei+l can occur in 2i, and let 2_+ 1 = ei+l(2d. It can be shown by a similar

argument that e_+l cannot change the state of k, ,¥k,e, or ,¥e,k in such a way as to violate the

preconditions for ei, so ei can always occur in 2_+ 1. Furthermore, ei(ei+l(2i)) = ei+l(ei(_d).

ITherefore, r' = (... _i, _i+1, _i+2,. • .) is a valid run, where _T, = (..- ei+l, e_, ei+2..).

Consider rtk,e } and r_k,e }. (Recall that repeated states are removed in these sequences.) From

the construction of r', rk = r_ and re = r_. Since ei and ei+l do not change the states of processes

other than k and e, rt = r_ for all process t _ {k,l}. Therefore, r =p r'.

In summary, we have shown that if --,(ei _ ei+l) in 7-/r, then ei+l can be moved before ei to

yidd 7-G, such that r t =p r. It can also be shown that for any two events ei and ej in 7-G such

that i < j and _(ei _ ej), ej fall occu.r In _i, ei can occur in ej(_i), and ej(ei(Ei)) = ei(%(Ei)).

Therefore, ej can be moved to directly before ei to yield 7¢_, such that r -p r t.

We can now prove the theorem.

Proof: If run r satisfies FS2 then the theorem trivially holds, so we assume that r violates FS2.

Then, there exists at least one pair of processes i andj such that r _ (>(FAILEDj (i) A --,CRASHi). For

each such pair, by sFS2a, r _ 5C_SHi. Therefore, 7% is of the form (- ..[ailedj(i)...crashi...).

Definition 8 A pair of processes (i,j) is bad in 7-G i[7-l_ = (...failedj(i)--.crash/..-). Otherwise,

(i, j) is good in 7-l_.

We prove the theorem by induction on the number of bad process pairs in 7-/_.

Base case Assume that there is only one bad pair in 7-/_. Let _ = (x; failedj (i); y; crashi; z) where

:_, y, and z are sequences of events. Let k be the number of events In y. We construct by induction

on k a run r _isomorphic to r such that 7-/T, = (x_; crashi; failedj (i); yt; z) where x' and y' are sequences

of events.

Base Case (Inner Induction) Assume k = 0. 7_, = (x;failedj(i);crashi;z). Since

crashi and failed i(j) are of different processes, they can be swapped to yield 7-/_, =

(x; crashi;failedj(i); z) such that r' =p r. Clearly, r_ satisfies FS2.

Induction case (Inner Induction) Assume that the theorem holds for all histories

in which k < l - 1, and assume that k = L _ = (:t;failedj(i); el; e2; "-; et; crashi;

z). By Lemma 4 we know that --,(failedj(i) -- crashi). Let e,, be the first event of

(el;... ;crashi) such that .-,(failedj(i) -.-, e_). Since e,_ is the first such event and -- is

transitive, V:t : 1 < :_ < u : -,(e_: ---* %). Let Q c P be the set of processes such that

failedj (i), el, • •., %-1 are events of processes in Q. Then e,, is an event of a process in Q.

• Therefore, there is a history 7_,, = (x; e,,; failed j (i); e_; e2;-" "; e,,_l; e,,+_ ;-.-; et; crashi)

such that r" =p r. By the induction hypothesis there is a history 7-/,, of the desired

19

form such that r' =p r", and hence r' -p r. Dinner Induction

Induction case Assume that there are k bad pairs in _, one of which is (z, y). We will show

that we can use the same inductive construction presented in the Base Case to yield a history ?/_,,

such that r r =p r, with strictly fewer bad pairs, so that the Inductive Hypothesis applies to ?/,,.

Overview: Given a bad pair (x, y), consider another pair of processes (a, b). Using a case

analysis on all possible placements of failedb(a) and crasha in _ with respect to failedu(x) and

crash_, we show that using the earlier inductive construction, we can "fix" (z, y) -- i.e., construct

a history _, in which (x, y) is good -- such that:

• if (a, b) is bad in ?/_, then (a, b) is either good or bad in 7%,;

if (a, 6) is good in _, then (a, b) is either still good in _,,, or is bad in 1_,, but can be

fixed without making (z, y) bad again by using a finite number of applications of the same

inductive construction.

There are twelve possible placements of failedb(a) and crasha with respect to failed(z) and

crash_. In each case, we consider the effect on (a, b) of applying the inductive construction to

(z,9).

1. "" crasha ... failedb(a) ... failedv(x) ... crashx ...

2.... failedb(a) ... crash_ ... failedv(x) ... crash_ ...

3.... faile_ (z)

4.... failedv(z)

5.... failedb(a)

• .. crashx ... crasha ... failedb(a) ""

•.. crash ... faaedb(a) ... crash ...

• .. failedu(z) ... crash_ ... crash_ ...

6. ... crasha ... failedu(z) ... crash_ ... failedb(a) ...

Since only events that occur between failedu(x) and crashx are moved, (a, b) is independent

of (x, y) in these six cases, in that fixing (x, 9) has no effect on the goodness of (a, b). Thus,

(x, 9) becomes good and (a, b) is unchanged.

7.... failed 6(a) ... failedv(z) ... crash_ ... crash_ ...

In this case, the history 7_, resulting from an application of the construction of the base case

has one of two forms, depending on whether or notfailedu(x) -- crasha:

• 1t_, = (...failedb(a)...crasho ...crashx;failed_(x)...)

20

• 7"l_, = (... failed b(a)... crash_; failed (x)... crasha...)

,

In either case, (z, y) is now good and (a, b) remains bad.

• .. failedy(z) ... crasha ... crash_ ... faiIedb(a) ...

In this case, the history 7-/_, resulting from an apphcation of the construction of the base case

has one of two forms:

.

• 7"lr, = ('" crasha..._ailedu(z)...failedb(a)...)

• _, = (... crash_;failedu(z)...crasha...failedb(a)...)

In either case, (z, y) is now good and (a, b) remains good.

• .. crash_ ... failedu(z) ... failedb(a) ... crash_: ...

In this case, the history 7-/_, resulting from an application of the construction of the base case

has one of two forms:

10.

• 7-l_, = (... crash_...failedb(a)...crash_;failedu(x)...)

• 7-lr, = (... crash_...crash_;failedu(z)...failedb(a)...)

In either case, (z, y) is now good and (a, b) remains good.

• .. failedu(z) ... failedb(a) ... crashx ... crash_ ...

In this case, the history/_r, resulting from an apphcation of the construction of the base case

has one of two forms:

11.

s _, = (...failedb(a)...crash_;failedu(z)... crash_...)

• _, = (...crash_;failed_(z)...failedb(a) ...crasha...)

In either case, (z, y) is now good and (a, b) remains bad.

• .. failedu(z) ... failedb(a) ... crasha ... crash_: ...

In this case, the history/-/_, resulting from an application of the construction of the base case

has one of four forms:

• 7-lr, = (" .failedb(a)... crash_.., crash,;failedu(x)...)

• 7%, = (...failedb(a)...crash_;failedu(z)... crash_...)

• 7-t_, = (... crash_;[ailed_ (z)...failed b(a)... crasha...)

• 7-l_, = (...crash_...crash_;failedu(z)...failedb(a)...)

In the first three cases, (z, V) is now good and (a, b) remains bad; in the fourth case, (z, y) is

now good and (a, b) is now good, thus reducing the number of bad pairs by two.

21

12. •" failedy(z) ... crasha ... failedb(a).., crash_ ...

In this case, the history ?/_, resulting from an application of the construction of the base case

has one of four forms:

• "_rn ---

In the first

(... crash_; failed (_) . . .crash _ . . . failed b(a)...)

(... crash . . .failedb(a) . . .crash ; failed(x)...)

('" crash_ . . . crashx; failed (x)... failed b(a) . . .)

(... failed b(a)... crash_ ; failed u(z)... crasha . . .)

three cases, (z, y) is now good and (a, b) remains good. However, in the fourth

case, (z, y) is now good, but (a, b) is now bad. Thus, the number of bad pairs may not be

reduced. Furthermore, for each pair (i,j) such that failedj(i) and crashi appear in 7_ in the

same order with respect to[ailedu(z) and crash_ as[ailedb(a) and crasha, there can be one more

bad pair in 9_, than there is in ?(_.

However, we can construct a history _,, from 7%, in the same manner in which _, was

constructed from _, such that (a, b) is good in _,, and (z, _/) remains good in _,, as follows.

We have ?(_, = (...failedb(a)...crashx;failed_(z)...crasha...). Recall that in the construc-

tion of ?(_, from _, an event e between crashx and failedu(z) was moved if and only if

-_(fa//edv(z) --* e). Therefore, sincefailedb(a) was moved in the construction of and crash_

was not, it must be the case that in both _ and 1/_,

-_(failed_(x) --. failedb(a)) A (failedu(z) --* crash,) (1)

As shown in the case analysis, there are four possible results of applying the inductive

construction to 7-/_,. Either of the first three possibilities yields a history _r,, in which (a, b)

is good and (z, y) remains good. We claim that the fourth possibility cannot occur.

Proof: Suppose, for contradiction, that 7_,, = (...failed(x)...crasha;failedb(a)... crash_...).

Then by the earlier argument it must be the case that in ?(_, and 7_,,

-_(failedb(a) --. failed v(z)) ^ (f ai ledb(a) --* crash_) (2)

(failedu(x) --. crash_) in 7"l_, implies thatfailed,(z) occurs in 7(_, by sFS2d and the definition

of happens-before. Similarly, (failedb(a) --. crash_) implies that failed(a) occurs in 7-(_,.

Thus, Equations 1 and 2 imply that in 7-l_, both failedo(z) and failedx(a) occur in 7-t_,, which

contradicts sFS2b. Therefore, 7"l_,,cannot have the assumed form, so both (a, b) and (z, y)

must be good in ?/,,,.

Thus, if fixing (z, _/) in 7-(_results in t new pairs (a_, hi) that are bad in _,, then we can fix

all of these pairs in t applications of the inductive construction. (Note that the t bad pairs

22

donot interferewith eachother:sinceall of themarebad,they all fall under one of the first

11 cases. Therefore, fixing one pair (a_, bi) either fixes another pair (aj, bj) or does not affect

(aj, bj).)

Thus, the number of bad pairs in ?G can be reduced by at least one in some finite number

of applications of the inductive construction given in the base case. Furthermore, this number is

bounded by n.

Therefore, we can construct a history _r, with fewer than k bad pairs such that r' =__pr. From

the Induction Hypothesis, there is a run r" that satisfies FS2 such that r _ -p r u, therefore, r -p r u.

[]

A.3 Proof of Theorem 6

Theorem6 (Vr: r _ OsFS2b) =_ (Vr: r _ []W).

We will show that (3r : r _ ¢-_W) _ (3r : r _ -_¢sFS2b). To do this, we first assume that

W does not hold in some state of r, i.e., that it is possible for k failures to be detected such that

the quorum sets for those detections have an empty intersection. We then show that using this

assumption, a run can be constructed in which there is a k--cycle in the failed-before relation.

We divide the n proc_ in P into k sets So,..., Sk-a such that for 0 < i < k - 1, i E Si; that is,

processes 0 through k - I are in sets So through S k-l, and the rest of the processes are distributed

among So through Sk-l.

Consider the following scenario. For all i : 0 < i < (k - 1):

1. Process i suspects the failure of process i @1, and sends the message susPi,i_l to all processes

in P. The messages sent to the processes in set Si_l are delayed indefinitely.

2. As a result of Step 1, process i receives a message susPjel.j from process j @ 1 for all

j _ i, 0 _< j <_ k - 1, where O is subtraction modulo k. Thus, process i does not learn that

another process has suspected it of having crashed.

3. Before receiving SUSPjeLj, process i suspects the failure of process j, and sends susP¢,j to

all processes in P. The messages sent to the processes in set Siel are delayed behind the

previous messages (recall that interprocess channels are FIFO). Process i also acknowledges

any SUSP messages with ACK.SUSP messages.

4. Process i has now received ACK.SUSPk,i_a messages from all processes k in [.J Sj.
j¢iG1

Let Qi,i$1 = U Sj for all i : 0 < i < k - 1. No process in Sj is in Qj,j_I; in other words, for every
j¢i_31

k-1

process i in P, there is some quorum set of which i is not a member. Therefore, ('] Qi,i_l = O.

i=0

23

Furthermore,by definition of Qij being a quorum, every process i has received enough ACK.SUSP

messages to execute failedi(i @ 1). We have failedo(1), . . . ,failed(k_2)(k - 1), and failed(k_ l)(O), which

causes a k-cycle in the failed-before relation. []

AA Proof that the Protocol of Section 5 Implements sFS2b

Lemma 9 Given the protocol of Section 5, then [r _ 3S = { 1, 2,..., k }: (FAILED1(2) A FAILED2(3) A-- .A

FAILEDk_1(k))] =_ [3q: (sen_(S, "k failed') _ sendq(S, "k - 1 failed") _ ...4 sendq(S, "2 failed'))

in 7_,].

Proof: We use the notation SENDi(S, m) as shorthand for (Vp E S: SENDi(p, m)).

The size of the quora are sufficient to ensure W, by Theorem 7. By W, r _ qq : Vi, j E S :

FAILEDi(j) =_ RECVi(q, "j failed") =_ SENDq(S, "j failed"). We prove the lemma by induction on k.

Base case For k = 2, the proof is trivial. Let k = 3. S = {1,2,3}, r _ FAILED1(2)^

FAILED2(3), and r _ SENDq(S, "2 failed") ^ SENDq(S, "3 failed"). Assume for contradiction that

sendq(S, "2 failed") _ sendq (S, "3 failed") inT_,. Then, because channels are FH_O, recv2(q, "2 failed")

recv2(q, "3 failed") in _. By the protocol, crash2 --_ faaed2(3) in _, so r -_FAILED2(3). Therefore,

it must be the case that sendq (S, "3 failed") _ sendq (S, "2 failed").

Induction case Assume that the lemma is true for k = 1 - 1. For k = l, we have FAILEDl (2) ^

FAILED2(3) A --- A FAILEDt_I(1). By the induction hypothesis, sendq(S, "l- 1 failed") --_ -.-

sendq (S, "2 failed") in _. Assume for contradiction that sendq (S, "l - 1 failed") _ sendq (S, "1 failed")

in 7_r. Then, as in the base case, recvt_l(q, "l - 1 failed") _ recvt_l(q, "/failed"), so crash,_1

failedt_ l (l) in _ and r _ -_FAILEDt_1(/). Therefore, sendq(S , "/failed") --, sendq(S, "/- 1 failed")

in _. O

The quorum size for each failure detection is sufficient to guarantee W. Assume for contra-

diction that the failed-before relation is not acyclic. Then r _ qS = {1,..., k} : FAILED1(2) ^ ... A

FAILEDk_1(k) A FAILEDk(1). By Lemma 9, qq: sendq(S, "1 failed") --, sendq(S, "k failed") _ ...

sendq (S , "2 failed") in 7_ . Thus, recvl (q , "1 failed") _ recvl (q , "2 failed") in _,, crash1 _ failed 1(2)

in _,, and r _ -_FAILED1(2). D

24

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

PuOQ¢ fel:)Ort=n00urOeqt Io¢ Ihl ,'v_tecImn o(=nlonnstlon • Nltrrtaled to iv_rll_e I ho_'f Dar re1_Donm). _:lud_ the tm'_ tot revmw_ _1_. _ exIlln0 _ IH)u_me. (pathennq

m_taunma tt_ c_ata _. and _elk'_ lu_ _vmuq,_l lhe coitecb¢_ oi I_ocrva_. Se¢_l _mm_nCs rooaJr_ Ibm OurOen _limae o¢ any otis' _D_I of ti_ _ c_ iN--ion.

inc_uom9 suQQest_ Ioc _ this Our0en. to Wa._inQton H44_u,trlea Services, Oirectoczle lot mlorn_orb Otx_raSorn am4 1:leDo_s. 121S Jefletton Oavis HIoflwwy . Suile 1204. Atlngton,

VA 22202-4302. anti to the Oftice ol Managemem an4 8uOQ=. Paoefwo_ Re4uc:lmn Pro_ 1070a-01M). Wm_a_ltOn. DC 205Q_

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1994 Special Technical

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Simulating Fail-Stop

Systems

in Asynchronous Distributed

6. AUTHOR(S)

Laura Sabel, and Keith Marzullo

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)

Department of Computer Science

Cornell University

9. SPONSORING/MONITORING AGENCYNAME(S)AND ADDRESS(ES)

DARPA/ISTO

NAG2-593

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR 94-1413

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIMTY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

PLEASE SEE PAGE i

14. SUBJECTTERMS

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NSN 7_0-0t-2_5500

18. SECURITY CLASSIFICA_ON

OF THISPAGE
UNCLASSIFIED

19. SECURITY CLASSIFICA_ON

OF ABSTRACT
UNCLASSIFIED

15. NUMBEROFPAGES
24

16. PRICECODE

20. UMITA_ON OF
ABSTRACT

UNLIMITED

Star<sat-, Form 298 (Rev. 2-89)

PrlNlcdOed Oy ANSI St4. 239-18

298-1CQ

